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Abstract

A generalized continuum representation of two-dimensional periodic cellular solids is obtained by treating these
materials as micropolar continua. Linear elastic micropolar constants are obtained using an energy approach for
square, equilateral triangular, mixed triangle and diamond cell topologies. The constants are obtained by equating
two different continuous approximations of the strain energy function. Furthermore, the effects of shear deformation
of the cell walls on the micropolar elastic constants are also discussed. A continuum micropolar finite element approach
is developed for numerical simulations of the cell structures. The solutions from the continuum representation are com-
pared with the ‘‘exact’’ discrete simulations of these cell structures for a model problem of elastic indentation of a rec-
tangular domain by a point force. The utility of the micropolar continuum representation is illustrated by comparing
various cell structures with respect to the stress concentration factor at the root of a circular notch.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular solids are found in many natural and man-made structures. Cancellous or trabecular bone,
wood, cork and honeycomb of bees are familiar natural cellular materials. Man-made cellular solids are
found in a variety of structures such as sandwich panels, cushioning foams, compact heat exchangers, heat
resistant ceramic tiles of space shuttles and artificial biological implants. It is well known that cellular mate-
rials can extend the range of properties achievable by their solid counterparts (Gibson and Ashby, 1997). In
the last decade, cellular materials have emerged as promising multifunctional material systems (Evans et al.,
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.06.038

* Corresponding author. Tel.: +1 404 894 8495; fax: +1 404 894 0186.
E-mail addresses: rajesh.kumar@me.gatech.edu (R.S. Kumar), david.mcdowell@me.gatech.edu (D.L. McDowell).

mailto:rajesh.kumar@me.gatech.edu 
mailto:david.mcdowell@me.gatech.edu 


7400 R.S. Kumar, D.L. McDowell / International Journal of Solids and Structures 41 (2004) 7399–7422
1998, 2001). Specifically, 2-D prismatic cellular metals or metal honeycombs have a combination of prop-
erties that make them suitable for a range of applications such as ultra-light-weight structures, heat
exchangers, energy absorption systems, vibration control and acoustical scattering. In many applications,
the material is required to meet multiple performance objectives. For example, it may be required to carry
mechanical loads as well as to serve as a heat sink. Metal honeycombs are manufactured using a powder
slurry extrusion process developed at the Georgia Institute of Technology and are known as linear cellular
alloys (LCAs) (Cochran et al., 2000). This manufacturing process allows complex cell arrangements and
shapes to be fabricated at fine scale if necessary and hence provides a tremendous opportunity to tailor
these materials for a given multifunctional application.

Mechanical behavior of cellular solids has been extensively studied. Gibson and co-workers have studied
the elastic stiffness, elastic buckling, plastic collapse and brittle fracture of 2-D honeycombs and 3-D foams.
These results are summarized in the book by Gibson and Ashby (1997). Recently, Wang and McDowell
(2004, in press) have derived the elastic and plastic properties of 2-D cellular structures of various topolo-
gies. In all these works, the overall properties are evaluated via discrete modeling in which the individual
cell walls are modeled as beams or struts. For uniform cell structures, analytical solutions are obtained by
analyzing a periodic unit cell, whereas for non-uniform cell structures, computational analyses have been
used.

While discrete analyses of cellular structures give very accurate stresses and strains in the cell walls,
they are computationally expensive. Furthermore, in many applications, such accurate distributions of
stresses and strains are not needed. For example, in a design exercise in which various 2-D cellular mate-
rials are to be rank-ordered with respect to, say, fracture toughness or notch resistance, it is prudent to
represent the cellular material as an equivalent continuum as an alternative to discrete modeling of cel-
lular structures. Banks and Sokolowski (1968) developed an analogy between rectangular lattice and cou-
ple stress theory. The couple stress theory is equivalent to the reduced Cosserat theory (Cosserat and
Cosserat, 1909), in which rotations are obtained from the anti-symmetric part of the displacement gradi-
ent tensor. Askar and Cakmak (1968) obtained micropolar representation of a rectangular lattice with
diagonals. Micropolar theory, developed by Eringen (1966), introduces independent rotations in addition
to displacement fields and is equivalent to full Cosserat theory (Cosserat and Cosserat, 1909). Bazant
(1971) and Bazant and Christensen (1972) derived the micropolar constants for a rectangular lattice by
including higher order terms in the strain energy approximation. They also considered the effect of initial
stresses and buckling. Perano (1983) also obtained micropolar elastic constants for discrete structures
using the energy approach. More recently, Chen et al. (1998) have studied the brittle fracture of cellu-
lar materials by representing the cellular microstructure by an equivalent micropolar medium. They
have analyzed square, triangular and regular hexagonal cell structures with respect to their fracture
resistance.

The approach adopted in the aforementioned works is based on equating the continuum approximation
of the strain energy of the discrete structure to the strain energy of an equivalent micropolar continuum.
Except for Bazant (1971) and Bazant and Christensen (1972), all the remaining works consider only the first
order derivatives in the Taylor series expansion of the displacement and rotation fields to achieve the con-
tinuum approximation of the strain energy density function. Bazant (1971) and Bazant and Christensen
(1972) have retained the first order derivatives as well as those second order derivative terms that can be
converted into first order by integration by parts. They show that this approach is necessary to describe
joint equilibrium. The procedure of retaining the second order derivatives and then integrating by parts
leads to different micropolar constants than those obtained by ignoring the second order terms. Specifically,
the constants relating the in-plane moments and curvature are different for the two approaches, whereas the
constants relating the stresses to strains are exactly the same. An alternative to the energy approach has
been adopted by some researchers in deriving the micropolar constants of 2-D cellular structures, in which
joint equilibrium as well as compatibility of displacement and micro-rotation are satisfied exactly by
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considering a structural analysis of a representative unit cell (Wang and Stronge, 1999; Warren and Byskov,
2002).

The goal of this paper is to derive micropolar constants for a range of periodic 2-D honeycomb cell top-
ologies, including rectangle, equilateral triangle, mixed square-triangle and diamond. The cell structures
considered in this paper are restricted to those for which a periodic unit cell containing a single joint
can be identified. Two prominent cell topologies that violate this requirement are hexagonal and Kagome.
Hexagonal cell structures contain two different types of joints––for one the cell walls meet at 0�, 120� and
240� angles and for the other the cell walls meet at 60�, 180� and 300� angles with respect to horizontal. On
the other hand, the Kagome cell structure contains three different types of joints. For both these structures
a periodic unit cell must contain more than one joint. Furthermore, the joints are not located at the centroid
of the unit cell. To obtain the micropolar elastic constants for these cell topologies either explicit structural
analysis of the unit cell, as presented in Warren and Byskov (2002), or an extended energy approach with
explicit enforcement of equilibrium at the joints may be needed (Kumar and McDowell, in preparation).

The constants are obtained using an energy approach similar to those adopted in previous works
(Bazant and Christensen, 1972; Chen et al., 1998). In deriving the micropolar constants, the cell walls
are treated as both Euler–Bernoulli beams and Timoshenko beams. Two sets of constants are derived
for each of these two cases: one set retaining the second order derivatives in the strain energy approxima-
tion and the other set ignoring it. The issue of negative micropolar constants as obtained by the former
approach is discussed. A two-dimensional micropolar finite element is developed to compare the prediction
of micropolar theory with different sets of constants with ‘‘exact’’ discrete analysis. The usefulness of gen-
eralized continuum modeling of cellular materials is then illustrated by comparing different cell topologies
with respect to (i) elastic indentation of a rectangular domain, and (ii) the stress concentration factor at the
root of circular notch.
2. Generalized continuum representation––micropolar elasticity

The in-plane deformation of 2-D honeycombs is characterized by cell wall stretching and cell wall bend-
ing (Deshpande et al., 2001). In addition, the joints can translate in the plane as well as rotate about an axis
normal to the plane (Fig. 1). It is clear from Fig. 1 that the total rotation at a joint consists of macroscopic
Cell-wall

Joints
Macro-rotation

Micro-rotation, φ

Undeformed Configuration

Deformed Configuration

Fig. 1. In-plane deformation of a typical cell-wall.
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rotation associated with cell wall rotation and a microscopic rotation associated with the joint rotation.
Furthermore these two rotations are independent of each other––the macroscopic rotation is associated
with the translation of the joints and the microscopic rotation is an independent joint rotation. Thus in
order to represent the linear cellular material as an equivalent continuum, we must consider a micropolar
continuum that allows for independent rotational degree of freedom.

In the classical theory of continuum mechanics, each material point has translational degrees of freedom.
Furthermore, the interaction between two neighboring material points is via stress traction and the theory
is local. In order to capture limited non-locality, the classical theory has been enriched by adding independ-
ent rotational degrees of freedom at each material point. This theory is referred to as Cosserat or micro-
polar theory (see Nowacki, 1986). In the micropolar theory, the material point support couple stresses
in addition to the usual Cauchy-type stress; however, micropolar theory differs from the couple stress the-
ory or the reduced Cosserat theory in which the rotational degree of freedom is not independent, being
obtained from the anti-symmetric part of the displacement gradient tensor.

We restrict our attention here to infinitesimal strains and rotations. The governing equations of linear
micropolar elasticity (Eringen, 1966, 1968, 1999; Nowacki, 1986) are given by balance of linear momentum,
i.e.,
rji;j þ fi ¼ 0 ð1Þ

and balance of moment of momentum, i.e.,
eijkrjk þ mji;j þ gi ¼ 0 ð2Þ

The kinematic relations are given by
eji ¼ ui;j � ekji/k ð3Þ

jji ¼ /i;j ð4Þ
Finally, the constitutive equations are listed as
rji ¼ Ajiklekl þ Bjikljkl ð5Þ

mji ¼ Bkljiekl þ Cjikljkl ð6Þ

These are supplemented by displacement and micro-rotation boundary conditions,
ui ¼ uPi
/i ¼ /P

i

ð7Þ
as well as traction boundary conditions, given by
rjinj ¼ tPi
mjinj ¼ cPi

ð8Þ
Here, rij is the non-symmetric stress tensor, mij is the couple stress tensor, fi is the applied body force, gi is
the applied body moment, eij is the strain tensor, /i is the micro-rotation vector, and jij is the curvature
tensor. The prescribed value of displacement, micro-rotation, stress traction and couple stress traction
are denoted by uPi , /

P
i , t

P
i and cPi , respectively, defined on the boundary with an outward unit normal vector

ni. The constitutive behavior is described by fourth rank tensors A, B, and C. The uniform periodic cell
structures considered here are centrally symmetric and hence the components of the coupling term in the
constitutive description, Bijkl, are identically zero.

In 2-D plane deformation of a micropolar solid, at each material point there are two displacement
components, u1 and u2, and one rotational degree of freedom, /(=/3). The generalized strain vector, which
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includes strains and curvatures, is related to the displacement gradients, micro-rotation and micro-rotation
gradients (using Eqs. (3) and (4)) by
feg ¼

e11
e22
e12
e21
j13

j23

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

u1;1
u2;2

u2;1 � /

u1;2 þ /

/;1

/;2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð9Þ
where we have abbreviated / = /3, /,1 = /3,1 and /,2 = /3,2. The corresponding generalized stress vector is
given by
frg ¼ r11 r22 r12 r21 m13 m23½ �T ð10Þ
Using these stress and strain components, the constitutive equations (Eqs. (5) and (6)) can be written as
frg ¼ ½D�feg ð11Þ

where [D] is the 6 · 6 matrix of constitutive law coefficients.

The strain energy density of the micropolar elastic continuum can be written as a function of displace-
ment gradients, micro-rotation, and micro-rotation gradients, i.e.,
w ¼ wðe11; e22; e12; e21; j13; j23Þ ¼ wðu1;1; u2;2; ðu2;1 � /Þ; ðu1;2 þ /Þ;/;1;/;2Þ ð12Þ
with additional possible dependence on higher order gradient terms of the micro-rotation field. The stresses
and couple stresses are derived from the strain energy density function, w, i.e.,
r11 ¼
ow
oe11

¼ ow
ou1;1

; r22 ¼
ow
oe22

¼ ow
ou2;2

ð13Þ

r12 ¼
ow
oe12

¼ ow
oðu2;1 � /Þ ; r21 ¼

ow
oe21

¼ ow
oðu1;2 þ /Þ ð14Þ

m13 ¼
ow
oj13

¼ ow
o/;1

; m23 ¼
ow
oj23

¼ ow
o/;2

ð15Þ
In order to obtain the micropolar constitutive matrix, [D], for various periodic cell structures, we must
obtain the continuum approximation of the strain energy (Eq. (12)) for each of them by analyzing a rep-
resentative periodic unit cell. This is discussed in the next section.
3. Continuum approximation of elastic strain energy

In order to obtain the continuum approximation of the strain energy for different periodic cell structures,
we need to first identify an appropriate unit cell of the discrete structure. The strain energy of the discrete
structure is calculated by summing the contribution from strain energies of the individual members of the
cell. This strain energy is expressed in terms of displacements and rotations of joints. The continuum
approximation is then obtained by expressing the joint displacement and rotation in terms of displacement
and rotation of the centroid of the unit cell using a Taylor series expansion.

To illustrate the approach, consider a typical member of the 2-D prismatic cell structure between
two adjacent joints I and J shown in Fig. 2. In the initial undeformed state, the member is inclined at
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Fig. 2. Initial and deformed geometry of a typical cell wall member of the cellular solid.
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an angle h (measured counterclockwise) with respect to the global x1-axis. Let n and t be the unit normal
and unit tangential vectors, respectively, to the initial cell wall. After deformation, the member is in the
position i–j (see Fig. 2) with joint displacements uI and uJ. Furthermore, joints I and J rotate by angle
/I and /J, respectively. These rotations are with respect to the initial configuration and are considered pos-
itive counterclockwise.

Considering small deformation and neglecting the shear deformation of the beam, the total strain energy
per unit width of the cell wall in member I–J is given by the summing the contribution due to axial and
bending deformation, i.e.,
W IJ ¼ E0

2
uIt uJt

� � 1 �1

�1 1

� �
uIt
uJt

( )
þ k
2

uIn /I uJn /J
� � s00=L2 s0=L �s00=L2 s0=L

s0=L s �s0=L sc

�s00=L2 �s0=L s00=L2 �s0=L

s0=L sc �s0=L s

2
6664

3
7775

uIn
/I

uJn
/J

8>>><
>>>:

9>>>=
>>>;

ð16Þ

where un and ut are components of displacement along the normal (n) and tangential (t) directions, respec-
tively; E 0 = Eh/L; k = Eh3/(12L); L and h are the length and the thickness of the member, respectively. For
plane strain analysis, E ¼ Es=ð1� m2s Þ; for plane stress, E = Es. Here Es is the modulus of elasticity and ms is
the Poisson�s ratio of the solid cell wall material. For the case of zero initial axial forces, the stability func-
tions s and c are simply 4 and 1/2, respectively, and s 0 = s(1 + c), s00 = 2s 0.

In Eq. (16), the strain energy of the member is expressed in terms of the joint displacements and micro-
rotations. In order to obtain the continuum field approximation, we assume that the displacements and mi-
cro-rotations at joints I and J can be approximated by a second order Taylor series expansion of the
corresponding kinematic variables at the origin of the unit cell located at point O. This origin need not coin-
cide with any joint in the structure. Of course our assumption is that the variation in the kinematic quantities
from joint to joint is smooth. Thus, the displacement vector and joint rotation at I and J are expanded as
uI ¼ uþ LOI

ou

otOI

þ L2
OI

2

o
2u

ot2OI

þ � � � ð17Þ

/I ¼ /þ LOI

o/
otOI

þ L2
OI

2

o2/
ot2OI

þ � � � ð18Þ
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uJ ¼ uþ LOJ

ou

otOJ

þ L2
OJ

2

o2u

ot2OJ

þ � � � ð19Þ

/J ¼ /þ LOJ

o/
otOJ

þ L2
OJ

2

o2/
ot2OJ

þ � � � ð20Þ
where tOI and tOJ are the coordinates along the directions OI and OJ joining the origin O and joints I and J,
respectively. The distance of joints I and J from the origin O is given by LOI and LOJ, respectively. The nor-
mal and tangential (to the cell wall) components of the displacement at the two joints are obtained using the
following relations
uIn ¼ n � uI; uIt ¼ t � uI ð21Þ

uJn ¼ n � uJ; uJt ¼ t � uJ ð22Þ

Substituting these expressions in Eq. (16) gives a continuum field approximation of the strain energy of
member IJ. The sum contribution of the strain energies of all the members of the representative unit cell
of the cell structure gives the total strain energy. This is then divided by the planar area of the unit cell
to obtain the strain energy density. The micropolar constitutive equations can then be obtained using
Eqs. (13)–(15).

As mentioned in Section 1, another approximation is made before the strain energy function is derived
to obtain the constitutive equations. In most of the approaches (cf. Chen et al., 1998), the second order
derivative terms in the kinematic approximations are excluded. On the other hand, Bazant and Christen-
sen (1972) advocate retaining terms of the form //,11 and //,22 as they can result in first order derivative
terms by simple integration by parts. If such terms are retained, the strain energy density function can be
written as the sum of that due to first order derivatives (w1) and the additional second order derivative
terms, i.e.,
w ¼ w1 þ c1//;11 þ c2//;22 ð23Þ
where c1 and c2 are constants. The total strain energy over the unit cell can be written as
W ¼
Z
V
ðw1 þ c1//;11 þ c2//;22ÞdV ð24Þ
Integrating the second order terms by parts leads to
W ¼
Z
V
ðw1 � c1/

2
;1 � c2/

2
;2ÞdV þ

Z
oV
ðc1//;1 þ c2//;2ÞdS ð25Þ
Neglecting the surface integral (Bazant and Christensen, 1972), the strain energy density function in this
approach is given by the first order derivative terms plus two additional terms, i.e.,
w ¼ w1 � c1/
2
;1 � c2/

2
;2 ð26Þ
4. Micropolar constitutive relations for various 2-D cell structures

The micropolar elastic constants for various cell structures are obtained by determining the continuum
approximation of the strain energy density for a typical joint in a periodic cell structure. A repeating unit
cell is first isolated for each cell structure and the strain energy contribution of each member forming the
repeating structure is determined using the procedure discussed in Section 3, assuming the plane strain
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approximation. The components of stress and couple stress tensors are obtained using Eqs. (13)–(15). The
procedure and the results for various cell structures are outlined below.

4.1. Rectangular and square cell structures

A schematic of the rectangular cell structure is shown in Fig. 3. The cell sizes in x1 and x2 directions are
L1 and L2, respectively. The periodic unit cell is a rectangular region v–w–y–z.

The strain energy density (per unit depth in the x3-direction) of the cell structure is calculated by deter-
mining the total strain energy stored in the repeating cell and dividing by its area. The strain energy of the
unit cell is due to the deformation of members OA, OB, OC and OD. Thus, the strain energy density is
given by
w ¼ 1

2Ac

ðW OA þ W OB þ W OC þ W ODÞ ð27Þ
where Ac is the area of the unit cell given by
Ac ¼ L1L2 ð28Þ

In Eq. (27), a factor of half is due to the fact that each member at joint O contributes only half of its

strain energy to the unit cell. To calculate individual terms of Eq. (27), we expand the displacement and
micro-rotation at joints A, B, C and D in terms of their corresponding values at joint O. Let displacement
at joint O be u and micro-rotation be /. Then, displacement and micro-rotations at joints A, B, C, and D
are given by
uA � uþ LOA

ou

otOA

þ 1

2
L2
OA

o2u

ot2OA

; /A � /þ LOA

o/
otOA

þ 1

2
L2
OA

o2/
ot2OA

uB � uþ LOB

ou

otOB

þ 1

2
L2
OB

o2u

ot2OB

; /B � /þ LOB

o/
otOB

þ 1

2
L2
OB

o2/
ot2OB

uC � uþ LOC
ou

otOC

þ 1

2
L2
OC

o
2u

ot2OC

; /C � /þ LOC
o/
otOC

þ 1

2
L2
OC

o
2/

ot2OC

uD � uþ LOD

ou

otOD

þ 1

2
L2
OD

o
2u

ot2OD

; /D � /þ LOD

o/
otOD

þ 1

2
L2
OD

o
2/

ot2OD

ð29Þ
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where LOA = LOC = L1, LOB = LOD = L2 and
o

otOA

¼ � o

otOC

¼ o

ox1
;

o

otOB

¼ � o

otOD

¼ o

ox2
ð30Þ
Substituting the kinematic variables from Eq. (29) in Eqs. (21) and (22), we obtain the normal and tangential
components of displacement vector for each member of the unit cell. The total strain energy of each member
is then obtained using Eq. (16). The resulting strain energy density, calculated using Eq. (27), is given by
w ¼ 1

2L1L2

ðE0
1L

2
1u

2
1;1 þ E0

2L
2
2u

2
2;2 þ 12k1ðu2;1 � /Þ2 þ 12k2ðu1;2 þ /Þ2 þ 4k1L2

1/
2
;1 þ 4k2L2

2/
2
;2

þ 6k1L2
1//;11 þ 6k2L2

2//;22Þ ð31Þ
Here partial derivative of a quantity (Æ) with respect to spatial coordinates x1 and x2 are indicated by (Æ),1
and (Æ),2 respectively and E0

i ¼ Eh=Li, ki = Eh3/(12Li), i = 1,2. Note that only quadratic terms in the kine-
matic variables are retained. Furthermore, only the first order derivatives are retained except for the last
two terms 6k1L2

1//;11 and 6k2L2
2//;22. As just discussed, they can be integrated by parts to contribute terms

�6k1L2
1/

2
;1 and �6k2L2

2/
2
;2, respectively, to the total strain energy of the unit cell (see Eq. (26)). These terms

are important in the strain energy density expression to maintain joint equilibrium as pointed out by Bazant
(1971) and Bazant and Christensen (1972). However, these terms have been ignored in the recent works of
Chen et al. (1998) and others. The expression for the strain energy density for this cell structure is given by
w ¼ 1

2L1L2

ðE0
1L

2
1u

2
1;1 þ E0

2L
2
2u

2
2;2 þ 12k1ðu2;1 � /Þ2 þ 12k2ðu1;2 þ /Þ2 � 2k1L2

1/
2
;1 � 2k2L2

2/
2
;2Þ ð32Þ
The micropolar constitutive equations are obtained by inserting Eq. (32) into Eqs. (13)–(15). The resulting
relationships are given by
r11 ¼
E0
1L1

L2

e11; r22 ¼
E0
2L2

L1

e22

r12 ¼
12k1
L1L2

e12; r21 ¼
12k2
L1L2

e21

m13 ¼ � 2k1L1

L2

j13; m23 ¼ � 2k2L2

L1

j23

ð33Þ
The above expressions are also valid for a square cell structure with L1 = L2 = L. In this case, k1 = k2 = k

and E0
1 ¼ E0

2 ¼ E0. For the square cell structure, the constitutive relations imply in-plane orthotropy, as
expected.

If the higher order terms 6k1L2
1//;11 and 6k2L2

2//;22 are neglected in Eq. (31), the strain energy density is
w ¼ 1

2L1L2

ðE0
1L

2
1u

2
1;1 þ E0

2L
2
2u

2
2;2 þ 12k1ðu2;1 � /Þ2 þ 12k2ðu1;2 þ /Þ2 þ 4k1L2

1/
2
;1 þ 4k2L2

2/
2
;2Þ ð34Þ
The rij–eij relations remain same as in the previous case (Eq. (33)). However, the couple stress–curvature
relations now become
m13 ¼
4k1L1

L2

j13; m23 ¼
4k2L2

L1

j23 ð35Þ
4.2. Equilateral triangular cell structure

A schematic of the periodic equilateral triangular cell structure with a hexagonal repeating cell is shown
in Fig. 4.
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It is clear from Fig. 4 that the strain energy density can be written as
w ¼ 1

2Ac

W OA þ W OB þ W OC þ W OD þ W OE þ W OF
� �

ð36Þ
where the area of the unit cell is Ac ¼
ffiffiffi
3

p
L2=2. We assign the displacement and micro-rotation of point

O (centroid of the unit cell) as u and /, respectively. Using Eqs. (17)–(20), the displacement and micro-
rotation at surrounding joints are expanded in terms of a second order Taylor series expansion of the
corresponding variables at O. For example, displacement and micro-rotation at joints A and B can be
written as
uA � uþ LOA
ou

otOA

þ 1

2
L2
OA

o
2u

ot2OA

; /A � /þ LOA
o/
otOA

þ 1

2
L2
OA

o
2/

ot2OA

uB � uþ LOB

ou

otOB

þ 1

2
L2
OB

o2u

ot2OB

; /B � /þ LOB

o/
otOB

þ 1

2
L2
OB

o2/
ot2OB

ð37Þ
where LOA = LOB = L and
o

otOA

¼ o

ox1
;

o

otOB

¼ 1

2

o

ox1
þ

ffiffiffi
3

p

2

o

ox2
ð38Þ
Similar expressions are obtained for other joints. The normal and tangential components of displacement
for each member are obtained using Eqs. (21) and (22) and the strain energy of each member is obtained
using Eq. (16). The final expression for the strain energy density is obtained as
w ¼
ffiffiffi
3

p

8L2
fð3E0L2 þ 12kÞu21;1 þ ð3E0L2 þ 12kÞu22;2 þ ð2E0L2 � 24kÞu1;1u2;2 þ ðE0L2 þ 36kÞðu2;1 � /Þ2

þ ðE0L2 þ 36kÞðu1;2 þ /Þ2 þ ð2E0L2 � 24kÞðu2;1 � /Þðu1;2 þ /Þ � 8kL2/2
;1 � 8kL2/2

;2g ð39Þ
Again only quadratic terms are retained. Further, all the terms that are second or higher order derivatives
of the spatial coordinates are ignored except for those that can be converted in to a first order derivative
using integration by parts, as discussed for the rectangular cell case.



R.S. Kumar, D.L. McDowell / International Journal of Solids and Structures 41 (2004) 7399–7422 7409
Using Eq. (39) with Eqs. (13)–(15) gives
r11 ¼
ffiffiffi
3

p

4L2
fð3E0L2 þ 12kÞe11 þ ðE0L2 � 12kÞe22g

r22 ¼
ffiffiffi
3

p

4L2
fðE0L2 � 12kÞe11 þ ð3E0L2 þ 12kÞe22g

r12 ¼
ffiffiffi
3

p

4L2
fðE0L2 þ 36kÞe12 þ ðE0L2 � 12kÞe21g

r21 ¼
ffiffiffi
3

p

4L2
fðE0L2 � 12kÞe12 þ ðE0L2 þ 36kÞe21g

m13 ¼ ð�2
ffiffiffi
3

p
kÞj13; m23 ¼ ð�2

ffiffiffi
3

p
kÞj23

ð40Þ
If the second order derivative terms are ignored, the constitutive relations remain same as Eq. (40) except
the couple stress–curvature relations now become
m13 ¼ ð4
ffiffiffi
3

p
kÞj13; m23 ¼ ð4

ffiffiffi
3

p
kÞj23 ð41Þ
4.3. Mixed triangle cell structure with square super lattice

We consider two mixed isosceles triangular cell structures which have a square super lattice. In mixed
triangle A (Fig. 5), each square of size L has two diagonal members, whereas in mixed triangle B (Fig.
6), each square of size L has only one diagonal.

For mixed triangle A, the strain energy contribution from members OA, OC, OE, OG to the unit cell is
half of their total strain energy, whereas, the contribution from members OB, OD, OF, OH is full. Thus,
w ¼ 1

Ac

1

2
ðW OA þ W OC þ W OE þ W OGÞ þ W OB þ W OD þ W OF þ W OH

� 	
ð42Þ
where the area of the repeating cell is Ac = L2. The strain energy density (retaining the second order deriv-
ative terms that can be integrated by parts to yield first order terms) in terms of kinematical variables is
obtained as
L

L

O A

B

C

D

E

F
G

H

x1

x2

Fig. 5. Schematic of mixed triangular cell structure A.
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Fig. 6. Schematic of mixed triangular cell structure B.
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w ¼ 1

4L2
fð3E0L2 þ 24kÞu21;1 þ ð3E0L2 þ 24kÞu22;2 þ ð2E0L2 � 48kÞu1;1u2;2 þ ðE0L2 þ 48kÞðu2;1 � /Þ2

þ ðE0L2 þ 48kÞðu1;2 þ /Þ2 þ ð2E0L2 � 48kÞðu2;1 � /Þðu1;2 þ /Þ � 8kL2/2
;1 � 8kL2/2

;2g ð43Þ
and the constitutive equations are derived from the strain energy as
r11 ¼
1

2L2
fð3E0L2 þ 24kÞe11 þ ðE0L2 � 24kÞe22g

r22 ¼
1

2L2
fðE0L2 � 24kÞe11 þ ð3E0L2 þ 24kÞe22g

r12 ¼
1

2L2
fðE0L2 þ 48kÞe12 þ ðE0L2 � 24kÞe21g

r21 ¼
1

2L2
fðE0L2 � 24kÞe12 þ ðE0L2 þ 48kÞe21g

m13 ¼ ð�4kÞj13; m23 ¼ ð�4kÞj23

ð44Þ
Neglecting the second order derivatives in the strain energy function, the constitutive equations remain
same except the couple stress–curvature relations, which are given by
m13 ¼ ð8kÞj13; m23 ¼ ð8kÞj23
For mixed triangle B (Fig. 6), the strain energy density is obtained from
w ¼ 1

Ac

W OA þ W OC þ W OE þ W OG þ 1

2
ðW OB þ W OD þ W OF þ W OHÞ

� 	
ð45Þ
with Ac = 2L2.
The strain energy in terms of kinematical variables is given by
w ¼ 1

4L2
fð3E0L2 þ 6kÞu21;1 þ ð3E0L2 þ 6kÞu22;2 þ ð2E0L2 � 12kÞu1;1u2;2 þ ðE0L2 þ 30kÞðu2;1 � /Þ2

þ ðE0L2 þ 30kÞðu1;2 þ /Þ2 þ ð2E0L2 � 12kÞðu2;1 � /Þðu1;2 þ /Þ � 8kL2/2
;1 � 8kL2/2

;2g ð46Þ
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and the constitutive relations are given by
r11 ¼
1

2L2
fð3E0L2 þ 6kÞe11 þ ðE0L2 � 6kÞe22g

r22 ¼
1

2L2
fðE0L2 � 6kÞe11 þ ð3E0L2 þ 6kÞe22g

r12 ¼
1

2L2
fðE0L2 þ 30kÞe12 þ ðE0L2 � 6kÞe21g

r21 ¼
1

2L2
fðE0L2 � 6kÞe12 þ ðE0L2 þ 30kÞe21g

m13 ¼ ð�4kÞj13; m23 ¼ ð�4kÞj23

ð47Þ
The constitutive relations are same when the second order derivatives are ignored except the couple stress–
curvature relations which are given by
m13 ¼ ð8kÞj13; m23 ¼ ð8kÞj23
4.4. Diamond cell structure

A schematic of the diamond cell structure is shown in Fig. 7. It is made up of isosceles triangles and diag-
onal square cells. The repeating cell is the square B–C–E–F of area Ac = 2L2. The strain energy density is
given in terms of the strain energy of the members as
w ¼ 1

Ac

1

2
ðW OA þ W ODÞ þ W OB þ W OC þ W OE þ W OF

� 	
ð48Þ
The constitutive equations are derived from the strain energy density function,
w ¼ 1

4L2
fð2E0L2 þ 12kÞu21;1 þ ðE0L2 þ 12kÞu22;2 þ ð2E0L2 � 24kÞu1;1u2;2 þ ðE0L2 þ 24kÞðu2;1 � /Þ2

þ ðE0L2 þ 12kÞðu1;2 þ /Þ2 þ ð2E0L2 � 24kÞðu2;1 � /Þðu1;2 þ /Þ � 6kL2/2
;1 � 4kL2/2

;2g ð49Þ
L L

O
A

BC

D

E F

x1

x2

Fig. 7. Schematic of the diamond cell structure.
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giving
r11 ¼
1

2L2
fð2E0L2 þ 12kÞe11 þ ðE0L2 � 12kÞe22g

r22 ¼
1

2L2
fðE0L2 � 12kÞe11 þ ðE0L2 þ 12kÞe22g

r12 ¼
1

2L2
fðE0L2 þ 24kÞe12 þ ðE0L2 � 12kÞe21g

r21 ¼
1

2L2
fðE0L2 � 12kÞe12 þ ðE0L2 þ 12kÞe21g

m13 ¼ ð�3kÞj13; m23 ¼ ð�2kÞj23

ð50Þ
The constitutive relations remain same when the second order derivative terms are ignored except the cou-
ple stress–curvature relations, which are given by
m13 ¼ ð6kÞj13; m23 ¼ ð4kÞj23
5. Effects of cell wall shear deformation on micropolar elastic constants

So far we have derived the micropolar elastic constants for various cell structures assuming the cell walls
behave as Euler–Bernoulli beams. Such an assumption is quite good for typical cellular structures having low
relative density as the cell walls then have large aspect ratios. However, if the aspect ratio of the cell walls is
small or if the cell wall material has small shear rigidity, the effect of shear deformation must be considered.
Furthermore, for purposes of parametric analysis in design, the aspect ratios of the cell walls may be allowed
to vary which could lead to cases for which the effects of shear deformation may become important.

The effects of shear deformation can be taken into consideration by treating the cell walls to behave as
Timoshenko beams. For Timoshenko beams, the total strain energy (per unit width) of a typical member I–
J can be derived as (cf. Eq. (16))
W IJ ¼ E0

2
½ uIt uJt �

1 �1

�1 1

� �
uIt
uJt

( )
þ k
2
½ uIn /I uJn /J �

~s00=L2 ~s0=L �~s00=L2 ~s0=L

~s0=L ~s �~s0=L ~s~c

�~s00=L2 �~s0=L ~s00=L2 �~s0=L
~s0=L ~s~c �~s0=L ~s

2
6664

3
7775

u1n
/I

uJn
/J

8>>><
>>>:

9>>>=
>>>;

ð51Þ

where ~s00 ¼ 2~s0, ~s0 ¼ ~sð1þ ~cÞ and ~s and ~c are given by
~s ¼ 4L2=3þ 4EI=ðGA0Þ
L2=3þ 2EI=ðGA0Þ

; ~c ¼ 2L2=3� 4EI=ðGA0Þ
4L2=3þ 4EI=ðGA0Þ

ð52Þ
Here, I = h3/12 and A0 is the effective cross-sectional area of the member given by A0 = jA, where A is the
cross-sectional area of the member and j is shear correction factor equal to 10(1 + m)/(12 + 11m) for a rec-
tangular cross-section, where m is the Poisson�s ratio (Shames and Dym, 1985). Note that, in the limit as EI/
GA0!0, we get ~s ¼ 4 and ~c ¼ 1=2 which corresponds to the Euler–Bernoulli beam theory.

The procedure for obtaining the micropolar elastic constants for various cell structures remains the same
as discussed for the Euler–Bernoulli case. Again either of the two approximations of the strain energy func-
tion can be made, one ignoring the second order derivative terms all together and the other retaining second
order derivative terms that can be integrated by parts to yield first order derivative terms in micro-rotation



Table 1
Micropolar elastic constants for various cell structures considering shear deformation of cell walls (Timoshenko beams)

Rectangular Equilateral triangular Mixed triangle A Mixed triangle B Diamond

D11 E0
1
L1
L2

ffiffi
3

p

4L2
ð3E0L2 þ 2k~s0Þ 1

2L2
ð3E0L2 þ 4k~s0Þ 1

2L2
ð3E0L2 þ k~s0Þ 1

2L2
ð2E0L2 þ 2k~s0Þ

D22 E0
2
L2
L1

ffiffi
3

p

4L2
ð3E0L2 þ 2k~s0Þ 1

2L2
ð3E0L2 þ 4k~s0Þ 1

2L2
ð3E0L2 þ k~s0Þ 1

2L2
ðE0L2 þ 2k~s0Þ

D12 0
ffiffi
3

p

4L2
ðE0L2 � 2k~s0Þ 1

2L2
ðE0L2 � 4k~s0Þ 1

2L2
ðE0L2 � k~s0Þ 1

2L2
ðE0L2 � 2k~s0Þ

D33
2k1~s01
L1L2

ffiffi
3

p

4L2
ðE0L2 þ 6k~s0Þ 1

2L2
ðE0L2 þ 8k~s0Þ 1

2L2
ðE0L2 þ 5k~s0Þ 1

2L2
ðE0L2 þ 4k~s0Þ

D44
2k2~s02
L1L2

ffiffi
3

p

4L2
ðE0L2 þ 6k~s0Þ 1

2L2
ðE0L2 þ 8k~s0Þ 1

2L2
ðE0L2 þ 5k~s0Þ 1

2L2
ðE0L2 þ 2k~s0Þ

D34 0
ffiffi
3

p

4L2
ðE0L2 � 2k~s0Þ 1

2L2
ðE0L2 � 4k~s0Þ 1

2L2
ðE0L2 � k~s0Þ 1

2L2
ðE0L2 � 2k~s0Þ

D55 � k1~s1~c1L1
L2

�
ffiffiffi
3

p
k~s~c �2k~s~c �2k~s~c � 3

2 k~s~c

D66 � k2~s2~c2L2
L1

�
ffiffiffi
3

p
k~s~c �2k~s~c �2k~s~c �k~s~c

D�
55

k1~s1L1
L2

ffiffiffi
3

p
k~s 2k~s 2k~s 3

2 k~s
D�
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L1

ffiffiffi
3

p
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in the strain energy function. The constitutive equations for various cell structures can be written compactly
as
r11

r22

r12

r21

m13

m23

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

D11 D12 0 0 0 0

D12 D22 0 0 0 0

0 0 D33 D34 0 0

0 0 D34 D44 0 0

0 0 0 0 D55 or D�
55 0

0 0 0 0 0 D66 or D�
66

2
666666664

3
777777775

e11
e22
e12
e21
j13

j23

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð53Þ
The constants Dij correspond to the case when the second order derivative terms are retained in the strain
energy density function after integration by parts. For the case when the second order derivative terms are
ignored, the constants Dij relating the stresses rij and strains ekl remain same. However, the moment–cur-
vature relationships now involve constants D�

55 and D�
66. The constants for various cell structures are listed

in Table 1.
6. Positive definiteness of strain energy with negative micropolar constants

The strain energy density function for a cellular solid modeled with 2-D linear micropolar elasticity can
be written in the following form (using Eq. (53))
w ¼ 1

2
ðD11e

2
11 þ D22e

2
22 þ 2D12e11e22 þ D33e

2
12 þ D44e

2
21 þ 2D34e12e21 þ D55j

2
13 þ D66j

2
23Þ ð54Þ
with constants Dij for individual cell structures as obtained earlier. As seen from the previous sections, all
the micropolar constants are positive when the second and higher order derivative terms in the continuum
approximation of the strain energy are ignored. However, when those second order derivative terms are
retained that are converted into first order derivatives by integration by parts, we obtained negative D55

and D66. This raises some concern regarding the positive definiteness of the strain energy function. Fur-
thermore, the negative value of the constants at first glance appear to violate the bounds on them as de-
rived by Eringen (1968), at least for cell structures that result in isotropic micropolar representation
(equilateral triangular). According to the bounds derived by Eringen (1968), these constants should be
positive.
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Bazant and Christensen (1972) and Bazant and Cedolin (1991), partially addressed the issue of positive
definiteness of the strain energy function in the context of square cell structure. They argue that the strain
energy of the individual members of the unit cell is positive. Hence their summation and continuous
approximation must be positive. Even though this argument provides sound justification, it fails to address
why these constants should violate the bounds derived for micropolar elastic solids in the isotropic case. We
provide some explanation for this apparently paradoxical result.

Both the issues, namely positive definiteness of strain energy function and positive micropolar constants,
are related. The bounds on isotropic micropolar constants were derived by Eringen (1968) considering the
continuum to be purely local. In such a case, the strains e and curvature j can be varied independently for
an infinitesimal material element. This would imply positive definite strain energy function only for positive
D55 and D66 (cf. Eq. (54)). However, when representing the cellular microstructure with an equivalent
micropolar continuum, we have a limited non-locality. The continuum material element cannot be less than
the characteristic cell size over which the continuum strain energy density is defined. The stresses and couple
stresses are assumed to act on the surface of the material element whereas the displacement and micro-rota-
tion correspond to the centroid of the element, the point about which the displacement and micro-rotation
are expanded in the Taylor series representation. The strain energy function averaged over this volume of
element should be positive definite and not the pointwise local strain energy function. Thus coefficients D55

and D66 can be negative as long as the strain energy density function integrated over the periodic unit cell is
positive definite.
7. Finite element implementation

The finite element implementation of micropolar elasticity is straightforward. The starting point is the
principle of virtual work (assuming zero body forces and moments) given by
Z

X
ðrij deij þ mij djijÞdV ¼

Z
oX
ðT i dui þ Qi d/iÞdA ð55Þ
where Ti and Qi are applied surface traction and surface moment vectors, respectively. Substituting Eqs. (3)
and (4) in Eq. (55), we get
Z

X
ðrij duj;i � eijkrij d/k þ mij d/j;iÞdV ¼

Z
oX
ðT i dui þ Qi d/iÞdA ð56Þ
where dui is virtual displacement vector and d/i is virtual micro-rotation vector. The principle of virtual
work is valid for the entire domain as well as any sub-domain (finite element). We approximate the dis-
placement and micro-rotation field over the element from the corresponding nodal values using interpola-
tion functions as
fug ¼ ½Nu�fdug; f/g ¼ ½N/�fd/g ð57Þ

Substituting the approximate displacement and micro-rotational fields in to the discretized form of the prin-
ciple of the virtual work (Eq. (56)), we obtain the element level equation as
½K�efdge ¼ ff ge ð58Þ

The global system of algebraic equations can be obtained using the standard finite element assembly tech-
niques. The assembly of the element equations into a global system of equation enforces the continuity of
displacement and micro-rotation components between the elements. The global finite element equations
can be solved after imposing appropriate kinematic boundary conditions on the displacement boundary
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Fig. 8. Linear and quadratic micropolar elements.
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of the domain. This involves prescribing the appropriate nodal displacement and micro-rotation compo-
nents at a node on the displacement boundary.

The finite element equations developed in the foregoing are implemented in ABAQUS finite element pro-
gram (ABAQUS, Inc., 2002) as a user-defined element. Planar four-node and eight-node isoparametric ele-
ments are developed with the micropolar theory. Each node has three degrees of freedom––two in-plane
displacement components, u1 and u2, and an in-plane micro-rotation component, /3 (Fig. 8).

Both the displacement and micro-rotation components are interpolated using same shape functions,
which for the four-node element are given by
N e
1 ¼ ð1� nÞð1� gÞ=4; N e

2 ¼ ð1þ nÞð1� gÞ=4
N e

3 ¼ ð1þ nÞð1þ gÞ=4; N e
4 ¼ ð1� nÞð1þ gÞ=4

ð59Þ
on the other hand, the eight-node element uses quadratic shape functions given by
N e
1 ¼ ngð1� nÞð1� gÞ=4; N e

2 ¼ �ngð1þ nÞð1� gÞ=4

N e
3 ¼ ngð1þ nÞð1þ gÞ=4; N e

4 ¼ �ngð1� nÞð1þ gÞ=4

N e
5 ¼ �gð1� n2Þð1� gÞ=2; N e

6 ¼ nð1þ nÞð1� g2Þ=2

N e
7 ¼ gð1� n2Þð1þ gÞ=2; N e

8 ¼ �nð1� nÞð1� g2Þ=2

ð60Þ
where n and g are the natural coordinates. Furthermore, full Gauss integration is used for both the
elements.

The element can be used in conjunction with either homogeneous isotropic micropolar solid (without an
underlying cell structure) or with cellular material using constants derived in Sections 4 and 5. The element
formulation is verified by solving the problem of stress concentration factor around a circular notch in a
large plate made of homogeneous isotropic micropolar solid. The results from the finite element simulations
are compared with the known analytical solution for a circular notch in an infinite plate for a homogeneous
isotropic micropolar elastic solid (Kaloni and Ariman, 1967). The results from the finite element solution
match the analytical solution (in the limit of large plate dimension to notch radius ratio), thus verifying the
micropolar finite element implementation.
8. Comparison of generalized continuum with ‘‘exact’’ discrete models

In order to assess the generalized continuum formulation of cellular materials developed in this paper,
we compare the results with the ‘‘exact’’ discrete simulations. The discrete simulations are performed using
finite element analysis of the cell structure with the cell walls modeled using beam elements.
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For this study, we choose a model problem of indentation of a rectangular block. The bottom edge of
the block is assumed to be fixed (i.e., u1 = u2 = / = 0) while the sides are traction free, i.e., both stress and
couple stress tractions are zero (cf. Eq. (8)). The top surface is also traction free except for a point force
applied at its center (Fig. 9). The cell wall material is assumed to be isotropic linear elastic defined by
Young�s modulus of 120 GPa and Poisson�s ratio of 0.3. The characteristic length L of various cell struc-
tures is taken as 2.0 mm. The relative density of the cellular material is taken as 0.1 for all the cell structures.
As the characteristic cell wall length and relative density of the cellular material is fixed, the cell wall thick-
ness varies for different cell topologies.

The discrete analysis is carried out using ABAQUS finite element program. The cell wall is modeled
using Euler–Bernoulli beam elements. Each segment of the cell wall is modeled using three beam elements
along its length.

The generalized continuum modeling is performed using the finite element approach as well. The domain
is discretized using four-noded quadrilateral user element developed in Section 7. The continuum model is
described by the micropolar elastic constants of each cell topology developed in Section 4. The cell walls for
this model problem are slender and hence the effect of shear deformation on the micropolar constants is not
considered.

For the square cell topology, both sets of constants are used in the simulations––one obtained by ignor-
ing the second order derivative terms in the strain energy density function and the other obtained by retain-
ing this term after integration by parts (see Section 4). The relative size of the finite element mesh with
respect to the characteristic cell size is varied in order to study its effect on the overall solution. Fig.
10(a)–(c) present the displacement and micro-rotation of the top edge obtained from the continuum and
discrete models. The number of elements used in the continuum model is indicated in the figure legends.
Note that 50 · 25 continuum elements correspond to one cell per finite element, 30 · 15 elements corre-
spond to four cells, 20 · 10 elements correspond to nine cells and 10 · 5 elements correspond to 25 cells.
It is noted that the accuracy of the finite element solution based on micropolar theory is poor in the vicinity
of the applied point load due to very large gradients of stresses and strains associated with that point. Mesh
refinement in this region can only be carried out until the element size is of the same order as the charac-
teristic cell size. The intrinsic limitation of micropolar continuum modeling in the regions of large gradients
is due to the fact that such gradients have not been accounted for in deriving the micropolar elastic con-
stants for various periodic cell structures. Higher order micropolar models would be necessary for this
purpose.

The solutions for the square cell topology presented in the foregoing display some interesting features.
The solutions obtained from the continuum analysis utilizing constants obtained from the two approaches
are similar when the finite element size contains four or more cells. The solution using the approach that
considers second order derivative terms in the strain energy function leads to oscillations in displacement
and micro-rotation when the element size is comparable to the cell size. By using a suitably large element,
the results from the continuum analysis compare reasonably well with the discrete solutions. Of course, as
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Fig. 9. Elastic indentation of a rectangular block made of linear cellular alloys.



Fig. 10. Comparison of micropolar and discrete analysis for square cell structure: (a) displacement u1 of the top surface,
(b) displacement u2 of the top surface, (c) micro-rotation / of the top surface.
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expected, the behavior near the point of applied loading is not captured very accurately due to neglect of
stress and strain gradients in the derivation of micropolar constants for periodic unit cells.

The continuum simulations for the remaining cell topologies are conducted using 20 · 10 elements to
discretize the rectangular domain. These results are presented in Figs. 11–14 for equilateral triangular,
mixed triangle-A, mixed triangle-B and diamond cell topologies, respectively. Again both methods of
obtaining micropolar constants are compared with ‘‘exact’’ discrete simulations in terms of displacements
and micro-rotation on the top edge.

The results show that the continuum simulations capture the overall behavior in reasonably accurate
manner for the square, equilateral triangular, mixed triangles A and B and, to a somewhat lesser extent,
the diamond cell structures.
9. Application of continuum modeling––comparison of cell topologies

Generalized continuum modeling of cellular structures is advantageous compared to discrete modeling
for some applications as it is computationally more efficient. Furthermore, complex boundary value prob-
lems can be easily handled using the generalized continuum approach. One of the applications of the con-
tinuum approach is to compare different cell topologies for design of structures of dimensions large
compare to cell size. As an illustration, we consider the problem of stress concentration factor around a
circular notch in a 2-D cellular material.

The geometry considered for the analysis, along with the finite element mesh and boundary conditions, is
shown in Fig. 15. Due to symmetry, only a quarter of the plate is analyzed. On edge PA, displacement in the
y-direction and the micro-rotation / are constrained, whereas on edge QC displacement in the x-direction
and the micro-rotation are constrained. The edge of the notch and the right edge are traction free boundary
with both stress and couple stress tractions zero (cf. Eq. (8)). On the top edge BC, displacement in the glo-
bal y-direction is prescribed and the corresponding stress rApplied

22 is obtained from the simulation. Other
components of the stress and couple stress tractions on this edge are zero, i.e., r21 and m23 are zero on
the top edge. The cell wall material is taken as isotropic linear elastic with Young�s modulus 120 GPa
and Poisson�s ratio 0.3. The relative density of the cellular material is taken as 0.1 and the characteristic
cell wall length, L, is taken as 2 mm for all cell topologies considered. Eight-noded quadratic elements
Fig. 11. Displacements and micro-rotation of the top edge for equilateral triangular cell structure.



Fig. 12. Displacements and micro-rotation of the top edge for mixed triangle-A cell structure.

Fig. 13. Displacements and micro-rotation of the top edge for mixed triangle-B cell structure.
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are used in this study. The mesh is such that the minimum element size is 5 mm. This choice is based on two
considerations: first the mesh should be fine enough to capture the gradients in solution due to the notch
and secondly, the element size should not be less than the characteristic cell dimension (cell wall length);
otherwise it is not representative of the underlying cell structure. The micropolar elastic constants chosen
are those obtained by neglecting the second order derivative terms in the strain energy functions.

The stress concentration factor, defined as SCF ¼ rP
22=r

Applied
22 , is shown in Fig. 16 for various cell top-

ologies. The cells are oriented such that their local orientation x1 � x2 (as shown in Figs. 3–7 of Section
4) coincides with the global x and y directions shown in Fig. 15. Fig. 16 shows that the square cell structure
has the highest stress concentration factor and the diamond cell structure has the lowest stress concentra-
tion factor. The high value of stress concentration factor for square cell structure has also been obtained by
Adachi et al. (1998). In conclusion, the diamond cell structure is the best choice amongst all the cells con-
sidered for this particular loading condition and cell orientation when the design is to be based solely on the
stress concentration factor.



Fig. 14. Displacements and micro-rotation of the top edge for diamond cell structure.

Fig. 15. Continuum modeling of circular notch in a plate made of various cell structures.

0

1

2

3

4

5

6

7

8

Square Equilateral
Triangular

Mixed Triangle
- A

Mixed Triangle
- B

Diamond

St
re

ss
 C

on
ce

nt
ra

tio
n 

Fa
ct

or

Fig. 16. Stress concentration factor for various cell structures.
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10. Conclusions

A strain energy-based approach is used to derive micropolar elastic constants for various 2-D periodic
cell structures namely, rectangular, equilateral triangular, mixed triangle and diamond. All of these cell
structures have the common characteristic that a single joint can be identified as defining a periodic unit
cell. Two sets of constants are obtained by considering different order of approximations in the continuum
representation of the strain energy function. Furthermore, micropolar constants considering the effect of
shear deformation of cell walls are derived. A micropolar finite element is developed to analyze and com-
pare various cell structures.

Elastic indentation of a rectangular block by a point force is considered to compare the continuum
micropolar theory and the ‘‘exact’’ discrete analysis. The solutions from the micropolar continuum ap-
proach are found to be of reasonable accuracy for rectangular, equilateral triangular, mixed triangle and
diamond structures. The analysis also illustrates that the two sets of micropolar constants result in similar
response as long as the finite element size is greater than the characteristic cell size.

To illustrate the utility of the continuum modeling in design selection, a problem of stress concentration
factor around a circular notch is considered. For the considered cell dimensions and orientation, it is found
that square cell structure leads to highest stress concentration factor, whereas the diamond cell structure
results in the lowest stress concentration factor.

It is clear that the approximate generalized continuum approach to model cellular structures has an
advantage over discrete modeling especially for design selection exercises involving various cell topologies
and complex domains. However, the approach is limited to periodic cell structures that contain a single rep-
resentative joint within its periodic unit cell as well as to problems where the gradients of stresses and
strains are not excessive. Particular attention must be paid in meshing the domain so that the element size
does not reduce below the characteristic cell size. The two conflicting requirements that the element size
should be small for capturing large gradients but larger than the characteristic cell size cannot be resolved
using the local micropolar theory presented here. Further research is underway to address this issue as well
as a related problem of continuum modeling of non-periodic (i.e., graded) cell structures.
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